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Note 

Integration Weights for Experimental Data 

1. INTRODUCTION 

Given a set of points, xi (i = 1,2 ,..., M), with 0 < xi < I, we seek a set of weights, 
wi , such that 

I :f(x) dx = c” W&Xi). 
i=l 

The integration limits impose no restrictions as an appropriate mapping allows the 
formula to be applied to any finite range. The numerical values of the function, f(xi), 
are considered to be derivable from experimental data and as such will have standard 
errors, ci , associated with each point, xi . It is the taking into account of the oi 
that alters the standard quadrature approach somewhat. This problem arises when the 
experimental limitations require measurements at particular points, or more 
frequently, when one wishes to use data taken from the literature. 

By requiring that the quadrature relation be exact for a polynomial of degree A4 - 1, 
the wi in (1) may be determined by solving the system of equations 

g wixin = & (n = 0, 1) 2 )...) A4 - 1). 

This is the usual procedure, but the weights so produced may be of such magnitudes 
as to be of no practical value. Numerical integration using experimental data contains 
two sources of error: the first is related to the accuracy of the quadrature formula 
itself, and the second to the accuracy of the experimentally determined values off(x,). 
The standard error, u, due to the latter is given by 

U = g Wi2Ut “‘3 
[ I 

which, for the case of equal CQ , is Wu<, where W is the square root of the sum of 
weights squared and has a theoretical minimum value = 1/AV2. Clearly a small 
value of W is desirable, but the determination of the weights from (2) leaves no 
freedom in this respect. To illustrate the serious nature of the problem, we consider 
the set of xi given by the square roots of 0,O. 1,0.2,..., 1 .O. The solutions, wi , obtained 
from (2) and rounded off to the nearest integer are shown in Table I in Column I; 
the corresponding value of W is 1768. Thus, while the wi are indeed correct from a 
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mathematical viewpoint, they would produce in a statistical sense a huge amplification 
of the experimental error. 

There are several reasonable approaches to this problem. The technique presented 
here is based on lowering the degree of the polynomial satisfied by the xi and using 
the resulting freedom to minimize u. 

TABLE 1 

Xi I 

0 0 

O.lliZ 4 

0.2112 -34 

0.3l12 168 

0.4l/2 -484 

0.51’2 887 

0.61ia -1071 

0.7l/2 852 

0.81’2 -430 

0.9l12 126 

1 -16 

W 1768 0.365 1.175 0.345 

II 
_____ 

0.131502 

0.224142 

0.174332 

0.124001 

0.082327 

0.051744 

0.032955 

0.026054 

0.030897 

0.047241 

0.074804 

Xi III 

0 0.026834 0.029446 

0.1 0.177536 0.151414 

0.2 -0.081042 0.036504 

0.3 0.454946 0.141487 

0.4 -0.435154 0.113398 

0.5 0.713764 0.055001 

0.6 -0.435154 0.113398 

0.7 0.454946 0.141487 

0.8 -0.081042 0.036504 

0.9 0.177536 0.151414 

1.0 0.026834 0.029446 

IV 

2. FORMULATION AND EXAMPLES 

The system of linear equations (2) is well known to be inherently ill-conditioned. 
To eliminate this aspect of the problem, we require (1) to be exact for the first M 
shifted Legendre polynomials, P*,(x). These polynomials are generated from 

P*,(x) = 1, 

P*&) = 2X - 1, 

(n + 1) P,*+l(x) = (2n + 1)(2X - 1) P*,(x) - nP,*_l(x). 

The system of equations (2) now takes the equivalent form 

g wJJ*,(xJ = 1, n = 0, 
zzz 0, n = 1) 2 )...) M - 1. 

(4) 

(5) 
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We require (5) to be satisfied for n < L, with L < M - 1, and proceed to minimize 
subject to this condition the function 

where the Ei are the statistical weights which are proportional to the oi2. Minimization 
of this function, which is equivalent to minimizing u of Eq. (3), leads to the linear 
system: Eqs. (5) with n = 0, I,2 ,..., L and 

2EiMji + i XnP*n(~i) = 0 (i = 1, 2 )...) M). (7) 
?Z=O 

These are then solved for the M values of wi and the L + 1 values of X, , the 
Lagrangian undetermined multipliers. The Et are introduced in (6) in place of the oia 
to stress that only relative values of the ai are required in (7); to find cr from (3), 
a knowledge of the absolute values is necessary. 

All calculations in the following examples were performed on an HP-2000 computer 
which employs 6 to 7 digit precision. The inherent ill-conditioning, which is due to 
the nature of the series (2) itself, has been removed through the use of orthogonal 
polynomials. It should be noted that serious ill-conditioning can nevertheless result 
from a poor distribution of the points, xi . Consequently, it is generally advisable 
whenever possible to employ extended precision in this type of numerical procedure. 

We consider first the problem previously cited, that is, the case where the xi are 
given by the square roots of 0, 0.1, 0.2 ,..., 1.0. We begin by setting all Ei = 1 and 
taking L = 9. This produces a value of W = 190 which is still large for a practical 
quadrature formula. By lowering L further, the following results are obtained: L = 8, 
W = 30; L = 7, W = 6; L =F 6, W = 1.8; L = 5, W = 0.72; L = 4, W = 0.46; 
and L = 3, W = 0.365. The last value of Wis close to the theoretical minimum, 0.302; 
the values of the corresponding wi are shown in Column II of Table I. 

In the above example, the distribution of the quadrature points was such that the 
degree of the polynomial satisfied by these points had to be reduced by approximately 
a factor of 2 before W was within an order of magnitude of the theoretical minimum 
and hence expected to be small enough for practical applications. In many instances, 
however, lowering the degree by one will produce a substantial improvement. Consider 
the case where the xi are 0, 0.1, 0.2 ,..., 1 .O. Equally spaced quadrature points give rise 
to Newton-Cotes formulas which are popular since the weights can be expressed as 
a ratio of integers. These formulas are tabulated [l] and the wi for this case are listed 
in Column III in Table I. The corresponding value of W is 1.175. By setting L = 9 
instead of 10, the wi shown in Column IV are obtained with W = 0.345, which is a 
threefold improvement in the statistical error, u. 

The program used in these calculations is available in both HP-BASIC and 
FORTRAN IV. Copies may be obtained from the first author. 
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